Optimization Method of Microwave Devices Based on Improved Extreme Learning Machine
نویسندگان
چکیده
Abstract With the rapid development of modern wireless technology, it is necessary to continuously optimize microwave devices meet higher requirements communication systems. In this paper, we propose a device optimization method based on extreme learning machine (ELM) and gray wolf optimizer (GWO). adopt GWO parameters ELM establish mapping relationships between design their responses. According inverse expected response, are obtained. The numerical results show that proposed can improve efficiency realize automatic compared with existing method.
منابع مشابه
Optimization method based extreme learning machine for classification
Extreme learning machine (ELM) as an emergent technology has shown its good performance in regression applications as well as in large dataset (and/or multi-label) classification applications. The ELM theory shows that the hidden nodes of the ‘‘generalized’’ single-hidden layer feedforward networks (SLFNs), which need not be neuron alike, can be randomly generated and the universal classificati...
متن کاملAn Improved Local Coupled Extreme Learning Machine
Local Coupled Extreme Learning Machine (LCELM) is a recently-proposed variant of ELM, which assigns an address for each hidden-layer node and activates the hidden-layer node when its activated degree is less than a given threshold. In this paper, an improved version of LCELM is proposed by developing a new way to initialize the address for each hidden-layer node and calculating the activated de...
متن کاملExtreme learning machine based supervised subspace learning
This paper proposes a novel method for supervised subspace learning based on Single-hidden Layer Feedforward Neural networks. The proposed method calculates appropriate network target vectors by formulating a Bayesian model exploiting both the labeling information available for the training data and geometric properties of the training data, when represented in the feature space determined by t...
متن کاملLeast-squares temporal difference learning based on extreme learning machine
This paper proposes a least-squares temporal difference (LSTD) algorithm based on extreme learning machine that uses a singlehidden layer feedforward network to approximate the value function. While LSTD is typically combined with local function approximators, the proposed approach uses a global approximator that allows better scalability properties. The results of the experiments carried out o...
متن کاملA Novel Multiple Instance Learning Method Based on Extreme Learning Machine
Since real-world data sets usually contain large instances, it is meaningful to develop efficient and effective multiple instance learning (MIL) algorithm. As a learning paradigm, MIL is different from traditional supervised learning that handles the classification of bags comprising unlabeled instances. In this paper, a novel efficient method based on extreme learning machine (ELM) is proposed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2022
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2245/1/012005